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The increasing trend of antimicrobial resistance is quite alarming and requires urgent response to 
circumvent the menace. Microorganisms are known to be resistant to adverse reactions using different 
survival strategies. Indiscriminate usage of antibiotics has driven the rapid spread of antibiotic 
resistance within pathogenic and opportunistic microorganisms. The majority of microbes have 
established defence mechanisms against antibiotics, including the efflux of antibiotics from cells via 
efflux pumps, enzymatic destruction of the antibiotic molecules, and chemical changes that protect the 
cellular targets of antibiotics. But in the course of this review highlight, we found microbial-resistance 
approach to antibiotics by stress-mediated process. The concepts of resilience and resistance are 
complementary and both represent different aspects of the stability of ecosystems. Recently, most 
stress conditions have been advocated to be molecular-switches to usp gene expression, which 
support microbial survival. It has been established that microorganisms resist macrophage-
phagocytosis and such resistance was attributed to usp gene expression. This showed that usp acts as 
an essential linkage to resistance of various antimicrobial agent. The ubiquitous nature of usp in 
various organisms was found to help organisms survive under stress conditions. Furthermore, this 
review will help explore the extent to which usp gene expression provides resilience and resistance to 
microorganisms.  
 
Key words: Universal stress protein, resilience, antimicrobial resistance. 

 
 
INTRODUCTION 
 
Most microorganisms survive stressful conditions through 
various known and unknown mechanisms. More often, 
microorganisms can adapt to stress conditions through 
various mRNA regulation methods and protein control 
translation with other general stress response procedures 
(Fang et al., 2017). Microbial stress response  contributes 

to the high rate of microbial resistance with potential 
targets on infectious diseases, which are traceable to 
universal stress proteins (usp) gene expression. 
According to O'Connor and McClean (2017), usps are 
conserved categories of stress proteins within the range 
of 140 to 160 amino  acids  that  are found in living things 
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including prokaryotes and eukaryotes (O’Connor et al., 
2020). 

The decreasing effect of antibiotics against bacterial 
infections globally is alarming and has been attributed to 
misuse and abuse of antibiotics over the last 50 years. 
Some other school of thought attributed resistance to 
prevalence and stability nature of resistance genes 
among bacterial pathogens which resulted to emergence 
of multidrug resistant pathogens (Akgul et al., 2018). The 
discovery of resistance genes among bacterial pathogen, 
enabled scientists to understand some microbial 
resistance mechanisms, yet the full procedure is still not 
fully understood. Hence, this calls for more novel 
antibiotics and chemotherapeutic approach, to help 
circumvent the menace attributed to microbial resilience 
and resistance. Moreover, some recent research work 
revealed that universal stress protein affect microbial 
latency, resilient and microbial resistance to stress (Jia et 
al., 2016; Akram et al., 2021). 

Universal stress proteins comprise a group of gene that 
are induced by different stress conditions (Hassan et al., 
2021) which sometimes relapses after stressors were 
withdrawn (Nachin et al., 2005). The usp constitutes a 
family of stress-induced gene that encompassed a 
conserved gene group that can be found in bacteria, 
eukaryotes and other higher animals (Liu et al., 2007; 
Gomes et al., 2011). This genetic sequence that 
translates into cytoplasmic proteins, identified to be usp, 
whose expression cushion a wide range variety of 
internal and external stresses. The level of the usp gene 
expressed on most isolates has been attributed to be as 
a result of variety of stress conditions, which include 
starvation, temperature, oxidative stress, high salt 
concentration, pH, ethanol, and antibiotics (Gustavsson 
et al., 2002). As microbes actively grow within and 
outside of their hosts as well as when they are in 
exponential and stationary phase, microorganisms have 
a broad variety of coping strategies to deal with the 
constant onslaught of stress situations. According to their 
genomic sequences, these isolates have a homologue 
that is a member of the family of universal stress proteins 
(Kvint et al., 2003; Liu et al., 2007; Hassan et al., 2021). 

Microorganism usp is made of a natural biological 
defence mechanism, which helps confer resistance to 
external factors under stress (Hassan et al., 2018). The 
organism's ability to survive in such extreme 
environments were obtained by the expression of usp 
through mechanism not fully understood. The usp gene 
has been demonstrated to facilitate the spread of 
pathogens to their hosts as shown by Rayan and Ray 
(2004) and Hensel (2009). Study conducted by Hingley-
Wilson et al. (2010) stated that the expression of usp 
genes in Mycobacterium tuberculosis enables the 
pathogenic isolate survive during treatment. Study 
conducted on usp M. tuberculosis showed that usp gene 
when expressed to stress helps the isolate enter the 
latency phase during tuberculosis infection. But usp gene  
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expressed by many microorganisms such as Listeria, 
Acinetobacter and Salmonella species were found to 
enable survival even against phagocytes. Moreover, usp 
gene expression in Pseudomonas aeruginosa and 
Porphyromonas gingivalis is the reason for its resistance 
and microbial resilience through biofilm formation 
(Drumm et al., 2009).  

Microbial protein adhesion found in Burkholderia 
cepacia and Staphylococcus aureus was found to play 
this specific role recently as usp gene is expressed. 
There are findings indicating that usp neutralizes some 
antibiotic effects causing resistance and its mechanism of 
action may be of help to enable design better functional 
antimicrobial (O’Connor and McClean, 2017). Similar 
work done by Liu et al. (2007) showed that usp when 
expressed played a formidable role in the presence of 
some microorganisms such as Salmonella and 
Staphylococcus species growth and virulence factor 
production. 

These usp genes were characterized with the presence 
of a gene motif conserved within a domain which was 
present in organisms and was highly induced under 
certain stress as first observed in Escherichia coli uspA 
(Nachin et al., 2005; Siegele, 2005; Jia et al., 2016). It 
was observed in E. coli that uspA deletion arrests growth 
at the stationary phase and are likely to initiate early 
death phase. Nowadays, numerous usp in a given 
microbial species, possess paralogous usp genes. Work 
done by Nachin et al. (2005) showed that elimination of 
usp genes exert different physiological approaches, 
showing that they have different role responses to 
microorganisms (Diez et al., 2000).  

Based on usp similarity of the usp domain, one 
tandem-type gene, namely uspE, the usp gene family in 
E. coli was separated into two sub-families uspE1 and 
uspE2, based on its functionality (Hafeez et al., 2021). 
Nitrosomonas europea and Archaeoglobus fulgidus were 
found to have six and eight known copies of genes 
encoding for different usp genes respectively, while 
Arabidopsis thaliana had four distinct copies of the usp 
genes (Tkaczuk et al., 2013). According to Nachin et al. 
(2005), the usp genes in E. coli produce proteins that are 
involved in oxidative stress, adhesion, and motility, 
among other things. 

Expression of usp genes was suggested to be 
regulated by sigma (σ) factors within RNA polymerases, 
and polyphosphates or guanosine 5'-diphosphate 3'-
diphosphate (ppGpp) were another important regulator of 
usp (Kvint et al., 2003). Under stressed conditions, usp 
genes were found to be expressed which aid microbial 
survival under harsh conditions (Tkaczuk et al., 2013), 
even though the full mechanisms were not fully 
understood. 

Universal stress proteins were found to be ubiquitously 
expressed in microorganisms with the general property 
as adaptation of bacteria to oxidative stress, temperature, 
hypoxia   variation   and   some  other  stress.  There  are 
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Figure 1. Salmonella typhimurium's usp phylogenetic tree. Clustal Omega and T-REX 
web servers were used to build the tree. A similar tree was found when the E. coli USPs 
were analysed (Gustavsson et al., 2002), with the exception of uspD's presence in the 
branch that included UspA and UspC (Bangera et al., 2015). 

 
 
 
evidences which show that usp gene facilitates microbial 
colonisation and pathogenicity to the human host 
environment, which enhances human host mortality rate 
(O’Connor and McClean, 2017).  
 
 
Universal stress protein classification and some 
functions 
 
At the Sanger Centre, universal stress proteins have 
been categorized into a fast-expanding orthologous 
grouping called Pfam (Gustavsson et al., 2002; Mistry et 
al., 2021). The usp domain can be found in more than 
1,000 different proteins that function either by overlapping 
or a single (Bateman et al., 2004; Isokpehi et al., 2021). 

All spheres of life contain members of the usp protein 
family. Furthermore, bacteria with the usp gene typically 
have many copies of it. Additionally, the usp comes in a 
variety of forms. One is a collection of tiny usp proteins 
with one usp domain that is between 14 and 15 kDa, and 
the other is a bigger version that has two usp domains in 
tandem and weighs around 30 kDa (Gustavsson et al., 
2002).  

Based on comparable sequences in the usp domain-1, 
uspF and uspG belong to a distinct subfamily than uspA, 
uspC, and uspD which are members of the same related 
subfamily as shown in Figure 1. According to Gustavsson 
et al., 2002) and Bangera et al. (2015), the tandem-type 
uspE protein's usp domain-2 is more closely connected to 
the uspF and uspG subgroups. 

Usp gene class I comprise uspA, uspC, and uspD 
genes that can exist in single or even in overlapping 
nature. Gustavsson et al. (2002) in their research finding 
towards effect of oxidative stress, found that if E. coli is 
challenged with hydrogen peroxide, uspACD gene 
expression are found to increase at the exponential 
growth phase (Hafeez et al., 2021).  

Nachin   et   al.   (2005)    also  challenged  E.  coli  with  

superoxide-generating agent like premium motor spirit 
and it was found to confer resistance against oxidative 
stress. The uspA and uspD appearance involved in 
altering cell capacity to resist oxidative agents but uspD 
alone helps regulate intracellular iron availability 
(Isokpehi et al., 2021). The uspF and uspG, which were 
determined to be mostly connected to adhesion and 
motility, are part of the Class II usp gene. They appeared 
to play a small function in the resistance to oxidative 
stress. 

Class III/IV usp genes function mainly by overlapping 
the role of all the other classes where uspE involve in 
regulating the cell capacity to withstand oxidative stress 
defence which is obtainable in class-I and also regulates 
cells aggregation that is obtainable in class-II (Nachin et 
al., 2005). UspE is a tandem usp that probably developed 
as a result of a gene-splicing event. In the past, uspE 
domain-1 and uspE domain-2 were names for the two 
different usp domains that it contained. When uspE 
proteins are divided into smaller pieces and treated 
individually, the uspE2 domain is more closely connected 
to uspFG. This is demonstrated by both the clustering 
analysis displayed in Figure 2, where uspE1 groups are 
more closely associated to class-I-usp. 

An intended class V protein that was projected to be 
uspB integral membrane was inserted as an out group to 
make it easier to separate the non-membrane usp 
families because it is thought to be member of protein 
and not a true universal stress protein (Lougheed et al., 
2022). These usp genes, during expression induce 
microbial resilient or resistant to the organism against the 
induced stress.  
 
 
Resilience and resistance response to microbial 
system 
 
For the  sake of human health, it is crucial to comprehend
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Figure 2. Clustering analysis results. Results of the clustering 
analysis with complete length, displaying the results of the 
clustering with each Usp separated into distinct domains and 
handled independently. Each usp family is shown in a different 
color and is labeled (Tkaczuk et al., 2013). 

 
 
 

the mechanisms governing microbiome stability in the 
face of ongoing disruption. According to Sommer et al. 
(2017), perturbation or stress is an event with variable 
magnitude, rhythmicity, and context that can have an 
impact on the immediate environment directly or indirectly 
by eliciting a subsequent reaction. 

Perturbations are classified depending on duration 
(Walker et al., 2004). In general, stress responses are 
classified as either short-term or long-term or even 
continuous event (Yang et al., 2019). Some organism 
gave rise to resilience response whereas others cause 
resistance in nature when exposed to stress. In order to 
understand the effect of stress in microbial system, it is 
important to survey microbial resilience and resistance. 
The system ability remains stable in the presence of a 
disturbance or stress is referred to as resistance (Oliver 
et al., 2015), whereas resilience refers to the amount of 
stress that a system can withstand before shifting 
towards a new equilibrium with a potential function or 
service (Gunderson, 2000; Lozupone et al., 2012). 

According to Gunderson (2000) and Shade et al. 
(2012), microbial resilience is a complicated 
characteristic of a system made up of multiple essential 
parts. First of all, resistance is a crucial component of 
resilience since it represents the likelihood that an 
organism or plant may depart from its constant state 
(Yang et al., 2019). 

Second, the latitude of change may be described as 
the greatest degree to which a microorganism can be 
altered by a stress before it loses the ability to return to 
the initially stable form (Gustavsson et al., 2002). In 
facing a  long-termed  or  continuous  stress  pattern,  like 

non-persisted nutrient availability, ethanol, oxidative 
stress, high salt concentration and antibiotics exposure 
(David et al., 2014), new approach has been understood, 
whose mechanism of action is traceable to usp-gene 
mechanism (Luo et al., 2023) (Figure 3).   
 
 
Antibiotic stress: A condition for microbial resilience 
and resistance 
 
Now that more bacterial strains are becoming resistant to 
antibiotics, their use was continually put to the test. 
Nanduri et al. (2008) and Woodford and Ellington (2007) 
discovered that universal stress protein gene expression, 
horizontal gene transfer, and mutations related to 
bacterial DNA replication have all contributed to the 
development of the resistance. In analysing different 
gene expression as it concerned sub-MIC antibiotics 
under Pasteurella multocida by Nanduri et al. (2008), its 
Pm70 protein was found to be expressed as its 
compensatory response to antibiotic. Tkaczuk et al. 
(2013) discovered likely protein from different 
microorganisms under different stressors as universal 
stress protein. 

Even though the use of antibiotics for treatment 
cannot be ignored, yet the use of antibiotics has a 
significant impact on the human microbiota. Despite 
some research suggesting that these effects are only 
temporary (Subramanian et al., 2014), other research 
indicates that these effects are permanent and disrupt 
homeostasis pathways that regulate immune responses 
(Dethlefsen  and  Relman,  2011).  Whether an antibiotic-
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Figure 3. Patterns of stress responses. In considering microbial well-being or responses to 
different stressors, it has been discovered that stress can cause a change in behaviour of 
microorganisms. Whereas others may recover with time after stress has been removed, 
some may not recover from stress with time even when the stress has been withdrawn 
(Shade et al., 2012). This behavioural attitude can be attributed to usp-gene expression. 

 
 
 

mediated stress response in a microorganism became 
resistant or resilient during or after stress, depends on 
some gene expression make-up. It is still unknown if all of 
the microbiota impacts that have been noticed were due 
to antibiotics' direct action or whether some of them are 
as a result of secondary effects physiochemical 
parameters or immunological responses (Sommer et al., 
2017).   

The resiliency of the microbiota may also influence how 
well a patient responds to antibiotic therapy. Resilience 
phenomena following antibiotic perturbation in humans 
have been studied in several observational studies. 
Dethlefsen and Relman (2011) showed that in-take of 
ciprofloxacin for five days with human volunteers 
displayed abrupt changes in the distal gut of 
microbiome’s makeup. Studies conducted by Jernberg et 
al. (2007) revealed that Phocaeiola species resisted 
clindamycin treatment within microbiome niche that was 
not recovered after antibiotic treatment withdrawal. In 
contrast, Phocaeiola dorei were recovered and was 
attributed usp gene expression within P. dorei 
(Dethlefsen and Relman, 2011).  

The number of Lactobacillus species within the small 
intestines and the expression of antimicrobial peptides 
gene were initially reduced by the regularly prescribed 
antibiotic amoxicillin (Schumann et al., 2005). Incomplete 
resilience was suggested to be caused by short-term use 
of antibiotic, which altered not only the mucosal antibody 
repertoire but also the composition of the microbiota in 
almost all participants within the case-study healthy 
volunteers. This work suggested that a key mechanism 
for   direct   antibody-dependent  systemic  immunological 

activities interaction between intestinal mucosal immune 
cells and the disturbed non-resilient microbiota (Jernberg 
et al., 2007) needed to be discovered. 

Antibiotics have been discovered to be a stressor, 
which can cause permanent-resilience, also known as 
resistance or partial-resilience, also known as resistance 
to the antibiotic therapy. Clostridium difficile infection is 
an example of clinical microbial resilience and it 
exclusively expresses its stress gene on administration of 
broad-spectrum antibiotic (Chang et al., 2008). It was 
established that little stress from commensal 
microorganisms gave C. difficile infection an advantage 
which allows pathogenic isolates to develop microbial 
resistance through stress-gene expression.  

Intriguingly, a recent study showed that antibiotic 
causes reduction of the microbiota particularly causes a 
decrease in the generation of secondary metabolites, 
which facilitates its colonization (Theriot et al., 2016). 
Even though varieties of mechanisms to resist stress 
conditions during active growth in the host have not been 
fully understood but usp-gene expression is another 
‘window of opportunity’ to explore and cushion the effect 
of antimicrobial resistance. A homologous to the family of 
usp gene was observed in the genome sequence of 
some isolates (Liu et al., 2007) (Figure 4). 
 
 
Antimicrobial resistance: Its relationship to usp-gene 
expression 
 
Antibiotic resistance to bacterial infectious disease is an 
increasing     trend      that      threatens     public     health



Onyia et al.          17 
 
 
 

 
 

Figure 4. Usp gene expression response in bacterial cell. The presence of 
nitric oxide (NO), stimulates the expression of usp gene within the cell thereby 
translating into proteins that enable the bacteria cell to withstand the effect of 
the stress. 

 
 
 

(Bandyopadhyay and Mukherjee, 2020). Obolski and 
Hadany (2012) research found evidence that certain 
bacteria are more likely to undergo horizontal gene 
transfer and mutation under stressful settings, leading to 
an earlier onset of antibiotic resistance. But recent 
findings have shown that bacterial exposure to stressful 
condition acquires resistance mainly by usp-gene 
expression technique (Handel et al., 2016). 

It was hypothesized that the gene should correspond to 
UDP-(3-O-(R-3-hydroxymyristoyl))-N-acetyl glucosamine 
after looking at the Proteus mirabilis universal stress 
protein (Pm-usp) structure. The E. coli proteins that 
contain the ligand - lpxA as was cited by Williams and 
Raetz (2007) and lpxC as was cited by Clayton et al. 
(2013) and its deacetylated by-products, function as 
catalysts for the initial step in the synthesis of lipid-A. The 
lipopolysaccharide membrane-anchoring moiety that 
makes up Gram-negative bacteria's outer membrane is 
known as lipid-A. The fact that this membrane protects 
the bacterium from harmful antibacterial agents makes it 
essential for bacterial survival (Arabia et al., 2021) 
Therefore, the initiation and expression of Pm-usp by the 
antibiotic-stressor, helps the isolate to resist the 
antimicrobial compound (Nanduri et al., 2008). If the 
presence of antimicrobial compound can mediate 
antimicrobial resistance through usp gene expression, it 
will be needful to understand the mechanism of action so 
as to help combat resistance menace of useful 
antibiotics. 

Usp appears to be a biological defence mechanism, 
which help microorganism pose resistance to external 
factors (Masamba and Kappo, 2021). Under stress 
conditions, usp can be overexpressed at persistent stress 
exposure and through varieties of mechanisms which  aid 

microorganisms survive such harsh conditions (Lee et al., 
2022). It has been demonstrated that usp aid pathogens 
in establishing a foothold within host organisms (Rayan 
and Ray, 2004; Hensel, 2009) and that usp expression 
enhances microbial defences, opening the door to 
pathogenic infection and difficult treatment due to 
resistance (Liu et al., 2007). M. tuberculosis may depend 
on usp genes for intracellular survival, according to 
research by Hingley-Wilson et al. (2010). An increasing 
group of tiny cytoplasmic proteins that have been 
influenced by a wide range of stimuli that makes up the 
universal stress protein family (Kvint et al., 2003; 
Gustavsson et al., 2002). E. coli K-12 uspA was 
discovered as a stress-mediated gene in 1992 after 
demonstrating that its synthesis was stimulated in 
response to many stress shocks (Nystrom and Neidhardt, 
1992, 1993).  

Subsequent work on usp gene regulation indicated that 
usp in stress responses showed that cold-shock stress 
does not induce synthesis of usp (Nachin et al., 2005), 
but was later disproved. It was shown that the reason 
why the cold-shock stresses were unable to induce usp 
gene expression in that experimental isolate was based 
on usp gene knockout.  

E. coli usp gene was found to be first discovered as 
universal stress protein and characterized by the 
existence of a conserved gene motif that is present in 
species and is significantly elevated under specific stress 
(Siegele, 2005; Jia et al., 2016). It was observed that usp 
deletion in E. coli causes growth retardation at the 
stationary phase. In a given species of E. coli, there are 
typically numerous universal stress proteins paralogous. 
Individual usp gene deletion has demonstrated that these 
genes play  distinct roles in cellular stress response (Diez 
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et al., 2000; Nachin et al., 2005). 

Majority of species have several copies of the usp 
paralogous, varying in number according to the organism. 
Six genes from the usp family, two of which are classified 
as subfamilies based on how closely their usp domain 
sequences match and one tandem-type gene, uspE, are 
present in E. coli (Hafeez et al., 2021). In comparison to 
the four copies of usp genes found in A. thaliana, N. 
europea and A. fulgidus have six and eight copies of the 
usp genes, respectively (Tkaczuk et al., 2013). 

Recent research has revealed that usp paralogous act 
to protect DNA from UV damage in response to high 
amounts of cytoplasmic polyphosphates or guanosine 5'-
diphosphate 3'-diphosphate (ppGpp)  (Gustavsson et al., 
2002; Ye et al., 2020). The production of the protein 
occurs in response to growth inhibition brought on by a 
deficiency in carbon, nitrogen, sulphate, or phosphate, 
osmotic shock, a high pH, temperature variation, or the 
presence of heavy metals, or antibiotics (Yohannes et al., 
2004). UspA undergoes serine and threonine 
phosphorylation after entering the stationary phase (Liu 
et al., 2007). While uspA overproduction results in a 
continuous growth-arrest state, mutants without uspA 
experience premature death during stasis. The ppGpp 
activates uspA transcriptionally while fadR suppresses it, 
knowing that uspA is a member of a protein superfamily 
that is highly conserved to be expressed via stress and 
can be supressed with a feedback inhibition of anti-
stressor (Ye et al., 2020). 
 
 
Mechanism and synthesis of usp gene family 
 
Universal stress proteins are synthesize in response to 
growth inhibition caused by various stressors such as 
starvation of essential nutrient, amino acid, exposure to 
heat, oxidants, metals, ethanol and antibiotics (Gomes et 
al., 2011; Masamba and Kappo, 2021). Upon receiving 
environmental stress signal the usp gene is 
phosphorylated from stressor signal at both serine and 
threonine phosphorylation sites and sometime upon 
microbial entry into the stationary phase (Freestone et al., 
1997; Lee et al., 2022). Mutant devoid of usp gene mostly 
do not survive stress on receiving stress signal and such 
stressor always cause premature death during stasis 
whereas overexpression of usp gene promotes survival in 
the presence of stress (Diez et al., 2000; Diao et al., 
2023).  

The uspA genes were also hypothesized to be a 
component of the recA-dependent DNA protection (Diez 
et al., 2000) and repair mechanism since its absence 
increases vulnerability to UV radiation exposure (Liu et 
al., 2007). RecA and ppGpp were found to promote the 
transcription of several stress-related genes, while fadR 
and ftsK were shown to suppress it (Farewell et al., 1996; 
Diez et al., 2000; Diao et al., 2023). However, fadR and 
FtsK are  not  involved  in  the  induction  of  uspA  during 

 
 
 
 
physiological stress, according to Phadtare and Inouye 
(2001). The cspC and cspE were found to increase the 
stability of uspA gene and make the gene expression 
more steadfast. An open reading frame upstream of uspA 
in E. coli encodes a 14 kDa protein that can withstand the 
majority of stressors, whereas uspB was discovered to 
withstand only ethanol stress. UspB expresses via sigma 
S-dependent rather than sigma 70-dependent, as is the 
case with uspA (Liu et al., 2007).  

The over-expression of the relA gene, which linked the 
activation of usp genes caused an ectopic rise in ppGpp 
levels development within the cell. Mutation in the ftsK 
gene can cause gene expression increase, and this 
super-induction could be stopped by deactivating recA. 
This suggests that usp paralogues were found as control 
of microbial stress conditions (Gustavsson et al., 2002; 
Dutta et al., 2021).  

Guanosine 5'-diphosphate 3'-diphosphate (ppGpp) is 
linked to antimicrobial drug resistance.  Trimethoprim, 
gentamicin, and polymyxin B are more effective against 
ppGpp-deficient E. coli mutants (Greenway and England, 
1999). In accordance to Pomares et al. (2008), greater 
ppGpp accumulation in mutant E. coli is associated with 
both increased resistance to fluoroquinolones and 
increased survivability in the presence of the peptide 
antibiotic microcin J25. Moreover, Streptomyces 
coelicolor finding suggested that the synthesis of ppGpp 
has recently been related to resistance to vancomycin 
and bacitracin (Poole, 2012). 
 
 
Roles of usp gene in microbial stress tolerance 
 
It has been described that usp gene might be linked with 
a wide number of act, like oxidative stress resistance, 
invasion, adhesion, antibiotic resistance and motility as 
were observed in E. coli, M. tuberculosis, Klebsiella 
pneumonia, and P. aeruginosa (Nachin et al., 2005; Boes 
et al. 2006; Tkaczuk et al., 2013; Havis et al., 2019). Most 
cells express many proteins necessary for their survival 
when under environmental stress. These proteins are 
typically referred to as usps and the majority of them are 
cytoplasmic proteins, while some of them may also have 
enzyme-like properties (Gustavsson et al., 2002). Even 
so, it is still unclear exactly which biochemical processes 
these stress proteins fully participate in and how their 
cellular defense works. However, the essence of these 
proteins are eminent in nature and drastically found to 
reduce stress tolerance of microorganism when present 
(Bangera et al., 2015). 

Methanococcus jannaschii and Haemophilus influenza 
proteins with usp-like domains have very similar folding 
configurations (Zarembinski et al., 1998), as 
demonstrated by the structures of these proteins (Sousa 
and McKay, 2001). Furthermore, structural and 
biochemical studies have revealed that usp gene 
domains can be  of  two  groups namely; the ATP binding 



 
 
 
 
ups and the non-ATP binding usp gene (Sousa and 
McKay, 2001).  

The M. jannaschii (MJ0577) ATP binding protein has a 
triphosphate binding motif made up of three glycine 
residues sandwiched between two to nine amino acid 
residues, with a serine or threonine or asparagine coming 
after the last glycine. Other ATP-binding usp also contain 
the phosphate binding loop (Bangera et al., 2015). These 
proteins' ability to modify the conformation of the 
phosphate binding loop may be crucial for carrying out a 
variety of cellular tasks, including the regulation of ATP 
hydrolysis. 

The uspF gene structure suggests that this tight ATP 
binding moiety conservation is not necessary but 
because of the stiffness of the phosphate binding loop 
brought on by chloride ion binding (Ye et al., 2020). This 
uspF active ATPase after chloride ion binding residues 
were altered thereby increasing the loop's flexibility and 
enabling it to adopt the cationic active conformation 
(Bangera et al., 2015). A pathogenic bacterium must 
have experienced high environmental pressures at 
different times during its life cycle in order for it to infect a 
host and cause disease. For instance, S. Typhimurium, 
the agent responsible for salmonellosis causes diarrhoea 
when exposed to a hostile environment. Upon entering 
the host cell, overcome the immune response of the host, 
which makes the pathogen withstand extreme stress and 
establish infection (Bangera et al., 2015; Dutta et al., 
2021).  

Microbial tolerance to stress was found to be initiated 
by usp-gene expression. The procedure was observed in 
studies demonstrated using wild-type and mutated E. coli 
uspA gene, which tolerate the growth of E. coli of the 
wild-type upon long term exposure to external stresses 
(Bandyopadhyay and Mukherjee, 2022) against mutated-
type. It showed that usp gene expression helps in 
microbial tolerance to stress responses. Additionally, usp 
plays a crucial role in the virulence of M. tuberculosis and 
Salmonella Typhimurium C5 (Drumm et al., 2009; Liu et 
al., 2007), and numerous genes encoding usp gene 
similar to USPs were predicted to exist by studying the 
Salmonella spp. genome. Now in order to understand the 
detailed mechanism of usp, more research work must be 
done within this research area to enable researchers 
have an in-depth knowledge of usp genes analysis. 
 
 
Oxidative stress: A condition for microbial resilience 
and resistance 
 
According to Rahman et al. (2012), oxidative stress is a 
condition where the amount of oxidation (reactive oxygen 
species) in the body outweighs the antioxidant systems 
within the body system. This results in a loss of 
equilibrium alongside the free radicals production and its 
intermediates system activity, which may outweigh the 
system's   capacity    to    neutralize    and  eliminate  free 
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radicals. In addition to dangerous occurrences like lipid 
peroxidation and oxidative stress also affect physiologic 
adaption processes and controls signal transduction 
(Lougheed et al., 2022). It is generally established that 
oxidative stress contributes in the aetiology of serious 
illnesses such atherosclerosis, hypertension, diabetes 
mellitus, ischemic disorders, and cancer, where oxygen 
free radicals attack biological molecules thereby causing 
those diseases (Yoshikawa and Naito, 2002). 

Free radicals are atoms with unpaired electrons, which 
is typically unstable and highly reactive because unpaired 
electrons have a tendency to pair with other electrons. 
When digested in vivo, an oxygen molecule (O

2
) goes 

through a four-electron reduction. By excitation of 
electrons that interact with transition elements during this 
process, reactive oxygen metabolites are produced. The 
reactive oxygen metabolites created in this way are 
known as active oxygen species and are more reactive 
than the original oxygen molecule.  

Free radicals are the only active oxygen species with 
an unpaired electron. Mechanism to eliminate these 
extremely reactive active oxygen species is necessary for 
aerobic organisms to maintain existence. It has been 
observed that oxidative stress may stimulate the 
expression of some usp gene, which promotes microbial 
resistance to stress (Havis et al., 2019). This implies that 
usp expressed genes are liable to most stress resistant. 
Therefore, usp-modulator and novel antioxidant should 
be develop to combat the menace of incessant microbial-
resistant (Rahman et al., 2012; Havis et al., 2019).  
 
 
Oxidative stress: A biological modulator and a 
signalling molecule for usp gene expression  
 
Oxidative stress not only causes cytotoxicity, but it also 
has a significant impact on messengers that control 
survival-critical processes of cell membranes (Liu et al. 
2017). The changed redox status within the cell causes a 
number of protein kinases to be activated, which has a 
variety of physiological impacts (Yang et al., 2019). 
These protein kinases include a number of receptor and 
non-receptor tyrosine kinases, protein kinase C, and the 
MAP kinase cascade (Lougheed et al., 2022). These 
protein kinases are crucial for a variety of cellular 
processes, like activation, proliferation, and differentiation. 
As illustrated in Figure 5, it has been determined that 
uspA and uspD expression and presence confer 
resistance to oxidative stress on developing E. coli cells 
when they are exposed to hydrogen peroxide (Nachin et 
al., 2005). 
 
 
CONCLUSION 
 
The increasing knowledge of usp gene expression 
among   microorganisms   have   programmed   the   cells  
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Figure 5. E. coli usp gene role in oxidative stress defence. Every usp has a shape around its name that 
denotes the class to which it belongs where circle stands for class I, a square for class II, and a diamond 
for classes III and IV. Arrows indicate how the usp protein affects a specific function, whereas 'T' shapes 
indicate how the usp protein affects other activities. The significant and minor effects of the usp in the 
various functions are depicted by solid and dotted lines, respectively. The inclusion of both of the 
aforementioned proteins is indicated as a component of the stated process by the brackets. For instance, 
adhesion and motility are both negatively affected by uspC and uspE, respectively (Nachin et al., 2005). 

 
 
 

toward resisting and escaping intimidating stressors, 
even though the functions of usp genes were not fully 
understood (Nachin et al., 2005). It is needful now to 
understand the in-depth details of usp mechanism which 
will enable researcher in influencing usp gene expression 
(Poole, 2012; Dhanyalakshmi and Nataraja, 2021).  

An in-depth significance of usp gene expression 
connection mediated by stress was found to cause 
resistance to external environmental factors 
(Bandyopadhyay and Mukherjee, 2020; Cui et al., 2021; 
Bhuria et al., 2022; Diao et al., 2023). The identification of 
the stress-induced effectors that promote resistance will 
help determine genes involvement and will also require to 
fully comprehend the significance and mechanism of 
stress responses. Further research on usp-modulation as 
therapeutic approach is required to circumvent the 
antimicrobial resistance architecture.  
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Antibiotic resistance is a major public health problem worldwide. Escherichia coli is one of the bacteria 
most frequently isolated in hospital infections and became more resistance to common antibiotics 
used. This resistance to antibiotics could be attributed to a modification of the genetic supports or the 
acquisition of mobile genetic elements. A total of 195 multi-drug resistant E. coli isolated from clinical 
samples, were analyzed. Of these multi-drug resistant E. coli, 54 isolates were producing extended-
spectrum beta-lactamase. The presence of class 1, 2, and 3 integrons was performed using simple PCR. 
To highlight the different classes of integrons, genomic DNA was extracted with the QIAmp, DNA mini, 
and Qiagen kit. The result of the 195 isolates DNA amplification showed that 60.5% isolates were 
positive for the class 1 integron, while class 2 integron was found in 6 isolates (3.1%) and class 3 
integron was found in 24 isolates (12.3%). Among multi-drug resistant E. coli producing extended 
spectrum beta-lactamase, 68.5% carried the class 1 integron, 3.7% for the class 2 integron, and 13% for 
the class 3 integron. The results of this study showed the presence of three classes of integrons in 
several clinical isolates of multi-drug resistant E. coli. The simultaneous presence of resistance genes 
and integron classes in several extended-spectrum beta-lactamase-producing isolates demonstrates 
the need for increased monitoring of antibiotic use. 
 
Key words: Integron, multi-drug resistant, Escherichia coli, extended-spectrum beta-lactamase. 

 
 
INTRODUCTION 
 
The increasing of resistance to commonly applied 
antimicrobial agents is being reflected by growing 
multiple drug  resistance  in  bacteria  and  is  becoming a 

growing threat to public health. The use of antimicrobial 
agents in animal husbandry has been linked to the 
development  and  spread of resistant bacteria (Agyare et  
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al., 2018). 

Escherichia coli, a conditional pathogen, is one of the 
most common and important pathogens in medical care 
settings. It is the most prominent cause of diarrhea, 
urinary tract infections, septicemia, and various other 
clinical infections, including neonatal meningitis (Wu et 
al., 2021). The problem of bacterial antibiotic resistance 
is one of the World Health Organization's highest 
priorities when it comes to threats to human health (Nasif 
et al., 2022). Beta-lactamase mediated resistance in E. 
coli is a significant problem that requires immediate 
attention (Tewari et al., 2022). 

Acquiring mobile elements, including plasmids, 
transposons, and integrons among Gram-negative 
bacteria, plays an important role in the development of 
antibiotic resistance (Sütterlin et al., 2020). Various 
classes of integrons possessing a wide variety of gene 
cassettes are distributed in bacteria throughout the world. 
The role of integrons as mobile genetic elements playing 
a central role in antibiotic resistance has been well 
studied and documented. Integrons are the ancient 
structures that mediate the evolution of bacteria by 
acquiring, storing, disposing, and resorting to the reading 
frameworks in gene cassettes (Sabbagh et al., 2021).  

Several classes of integron have been described, 
including classes 1 and 2 of the most common integrons 
of multi-drug resistant. Gram-negative bacteria are 
associated with antibiotic treatment failure (Kaushik et al., 
2018). 

The presence of integrons in the clinical E. coli isolates 
is also highly related to antibiotic resistance, class 1-
integron was highly prevalent in these pathogenic 
isolates (Nasif et al., 2022).  Class I integrons of E. coli 
strains were present in all sources, while the prevalence 
of intI2 was lower but remarkable in food isolates (Etayo 
et al., 2018). 

The percentage of clinical multi-drug resistant E. coli 
isolates was higher among those positive for integron II 
gene followed by integron III gene (Taha et al., 2018). 

The gene blaTEM, blaSHV, blaOXA, and blaCTX-M as well as 
integrons (Int1, Int2, and Int3) are involved in the 
antibiotic resistance of diarrheagenic E. coli (Dembélé et 
al., 2022). 

This study aims to determine the prevalence of class 1, 
2, and 3 integrons in multidrug-resistant E. coli isolated 
from the clinical specimen in two hospitals in Niamey, 
Niger. 
 
 

MATERIALS AND METHODS  
 

Study design and samples 
 

It is a cross-sectional study conducted in two  hospitals  of  Niamey,  

 
 
 
 
Niger (National and AMIROU BOUBACAR DIALLO hospitals). The 
study investigated 195 isolates of multi-drug resistant E. coli 
obtained from various clinical specimens collected from March 2014 
to June 2016. The clinical specimens included: urine, stool, blood, 
vaginal swab, and pus.  

Isolation, identification, antimicrobial susceptibility testing of 
isolates, and phenotypic characterization of extended-spectrum 
beta-lactamases (ESBL) were described in our previous study (Alio 
et al., 2017).  
 
 

Genomic DNA extraction 
 

Genomic DNA extraction was performed with the QIAmp, DNA mini 
kit (Qiagen Germany). Two colonies of E. coli isolates were 
suspended in 180 µl ATL buffer for the first digestion. The mixture 
was homogenized, then 20 µl of proteinase K was added, vortexed, 
and incubated at 56°C. After 1 h of incubation, the tube was 
centrifuged for 1 min at 8,000 rpm. After, 200 µl of AL buffer was 
added. The mixture was homogenized and incubated at 70°C for 10 
min. Then 200 µl of 100% ethanol was added. The mixture was 
centrifuged at 8,000 rpm for 3 min. The tube containing 600 µl of 
the total mixture was placed in the Qiagen column and centrifuged 
at 8000 rpm. After 3 min, 500 µl of AW1 buffer was added to the 
column and centrifuged at 8000 rpm for 3 min. Once this step was 
complete, 500 µl of buffer AW2 was added to the column and 
centrifuged at 14,000 rpm for 3 min. The column was then placed in 
an Eppendorf tube and 200 µl of buffer AE was added. The 
Eppendorf tube was incubated at room temperature for 1 min and 
then centrifuged at 8000 rpm for 3 min. The column was then 
discarded, and the Eppendorf tube DNA was stored at -20°C for 
integron analysis.  
 
 

Characterization of integrons 
 

The presence of class 1, 2, and 3 integrons was tested using 
simple PCR according to Ploy et al. (2000).  Primers sequences 
and amplicons of the different classes of integrons are listed in 
Table 1. 

Single PCRs were performed with a final reaction volume of 25 
µl. The PCR mix contained 2.5 µl of 10 X GC buffer, 0.5 µl of 
dNTPs (10 mM), 2 µl of MgCl2 (25 mM), 0.25 µl of Taq Polymerase 
(5 U/l), 14.25 µl of H2O, 1.5 µl of Forward primers, 1.5 µl of Reverse 
primers and 2.5 µl of DNA lysate. The PCR conditions were 94°C 
for 5 min, followed by 35 cycles of 94°C for 30 s for denaturation, 
annealing at 60°C (IntI1) and 62°C (IntI2 and IntI3) for 1 min, and 
then extension at 72°C for 1 min followed by a final extension of 
72°C for 7 min. Amplicons were stored at 4°C for electrophoretic 
separation. After PCR, 10 µl of each amplicon was mixed with a 
drop of blue loading buffer and then separated by electrophoresis 
on agarose gel (1%) with tris borate EDTA buffer (1X) at 130 V and 
300 mA during 1 h.  

Ladder of 100 and 200 bp (HyperLadder I, Bioline) were used. 
Once migrated, ethidium bromide gels were visualized under UV 
light. The molecular weight of the amplified fragment was checked 
against the expected fragment using several ladders. For the 
positive control, DNAs from the reference strains R3 and R7 were 
used for class 1 and 2 integrons, respectively. 
 
 

Data analysis 
 

Data were processed and analyzed using Microsoft Excel 2013 and 
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Table 1. Primers used for the detection of integrons. 
 

Integrons Primer sequence (5’-3’)                       Amplicon size (PB)                         Annealing temp. (°C) References 

IntI1 
F: ATTTCTGTCCTGGCTGGCGA 

600 60 Ploy et al. (2000) 
R: ACATGTGATGGCGACGCACGA 

     

IntI2 
F: CACGGATATGCGACAAAAAGGT 

806 62 Ploy et al. (2000) 
R: GTAGCAAACGACTGACGAAATG 

     

IntI3 
F: GCCCCGGCAGCGACTTTCAG 

600 62 Ploy et al. (2000) 
R: ACGGCTCTGCCAAACCTGACT 

 
 
 

Table 2. Prevalence of class 1, 2 and 3 integrons among MDR E. coli. 
 

Integrons class n (%) 
Isolates origin 

Stool N=49 Urine N=134 Pus N=7 Blood N=4 Vaginal swabs N=1 

IntI1  44 (89.8) 68 (50.7) 4 (57) 2 (50) 0 (0) 

IntI2  2 (4.1) 3 (2.2) 1 (14.3) 0 (0) 0 (0) 

IntI3  24 (49) 0 (0) 0 (0) 0 (0) 0 (0) 

 
 
 
Med Cal version 11.0.1.0. p ˂ 0.05 was considered to be 
statistically significant.   

 
 
RESULTS 
 
Bacterial isolates and antimicrobial susceptibility 
testing  
 
A total of 195 multi-drug resistance (MDR) E. coli were 
collected and analysed during the study period. Among 
these isolates, 54 (27.7%) were extended-spectrum beta-
lactamases producers. Therefore, 49 (25.1%) strains of 
multi-resistant E. coli were isolated from stool samples, 
134 (68.7%) strains from urine samples, 7 (3.6%) from 
pus samples, 4 (2.1%) from blood samples, and one 
strain from vaginal swabs. 

As shown in our previous study, high resistance to 
beta-lactams was observed, mainly with ampicillin 
(100%), amoxicillin + clavulanic acid (93.1%), cephalothin 
(98.2%), cefotaxime (92.6%), ceftazidime (97.2%), and 
ceftriaxone (83.9%) as compared to quinolone with 
ofloxacin (77.4%), ciprofloxacin (84.9%), and nalidixic 
acid (91.2%). Resistance to the monobactams was 
77.4% to aztreonam, and the sulphonamides were 95.4% 
to trimethoprim-sulfamethoxazole (Alio et al., 2017). 
 
 
Prevalence of class 1, 2 and 3 integrons in multidrug-
resistant E. coli isolates 
 
The PCR amplification results showed that, of the 195 
isolates, 118 were positive for the class 1 integron (IntI1) 
which represented 60.5% of all tested strains while  class 

2 Integron (IntI2) was found in 6 isolates (3.1%) and the 
class 3 integron (IntI3) was found in 24 isolates (12.3%) 
(Table 2). 

The results in Table 2 indicated a higher prevalence of 
IntI1 in stool isolates (89.8%) than in other isolates from 
urine (50.7%), pus (57%), and blood (50%) (p = 0.0006).  

In contrast, the prevalence of IntI2 observed in pus 
isolates (14.3%) was higher than that observed in stool 
isolates (4.1%) and urine isolates (2.2%) (p = 0.0020).  

On the other hand, results of this study reported the 
presence of IntI3 only in stool isolates with a prevalence 
of 49%. Figure 1 shows amplicons sizes of the different 
classes of integrons. 
 
 

Prevalence of class 1, 2, and 3 integrons in ESBL-
producing E. coli isolates 
 

Among the multidrug resistant E. coli isolates, 54 of them 
were producing extended spectrum beta-lactamases. 

From stools samples, the results indicate that there 
was no significant difference (p = 0.7637) between the 
prevalence of IntI1 in ESBL-producing E. coli (85.7%) 
and that observed in multidrug-resistant E. coli strains 
that did not express ESBL (91.4%). No ESBL-producing 
E. coli contained IntI2 gene was observed. However, a 
prevalence of 5.7% of these integrons was observed in E. 
coli which does not express ESBL. Moreover, for IntI3, a 
prevalence of 50 and 48.6% was observed in ESBL-
producing and non-ESBL-producing E. coli isolates, 
respectively (p =1.00). 

In urine samples, the prevalence of IntI1 was 59.5% in 
ESBL-producing E. coli and 47.4% in multidrug-resistant 
E.  coli  which  do  not  express  ESBL  (p = 0.2460).  The  
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Figure 1. Integrons class IntI1 (A), IntI2 (C) and IntI3 (B) of stool samples gel on agarose. 

 
 
 
Table 3. Prevalence of class 1, 2, and 3 integrons in ESBL-producing and non-producing E. coli isolates. 
 

Integrons 
class  

Isolates origin 

Stools  Urine  Pus  Blood  Vaginal swabs 

ESBL + 

N=14 

ESBL - 

N=35 

 ESBL + 

N=37 

ESBL - 

N=97 

 ESBL 
+ N=2 

ESBL 
- N=5 

 ESBL 
+ N=1 

ESBL - 

N=3 

 ESBL 
+ N=0 

ESBL - 

N=1 

IntI1 n (%)    12 (85.7) 32 (91.4)  22 (59.5) 46 (47.4)  2 (100) 2 (40)  1 (100) 1 (33.3)  0 (0) 0 (0) 

IntI2 n (%)    0 (0) 2 (5.7)  2 (5.4) 1 (1.0)  0 (0) 1 (20)  0 (0) 0 (0)  0 (0) 0 (0) 

IntI3 n (%)    7 (50) 17 (48.6)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0)  0 (0) 0 (0) 

 
 
 

Table 4. Combination prevalence of different resistance integron classes. 
 

Integrons class 
Isolates origin 

Stools N=49 Urine N=134 Pus N=7 Blood N=4 Vaginal swabs  N=1 

IntI1 + IntI2 2 (4.1) 2 (1.2) 0 (0) 0 (0) 0 (0) 

IntI1 + IntI3 24 (49) 0 (0) 0 (0) 0 (0) 0 (0) 

IntI2 + IntI3 2 (4.1) 0 (0) 0 (0) 0 (0) 0 (0) 

IntI1 + IntI2 + IntI3 1 (2.0) 0 (0) 0 (0) 0 (0) 0 (0) 

 
 
 
prevalence of IntI2 was 5.4 and 1% in ESBL-producing E. 
coli and non-ESBL-producing E. coli, respectively (p = 
0.2207). No IntI3 was detected in urine isolates. Only 
IntI1 in ESBL-producing isolates from pus and blood was 
detected with a prevalence of 100% (Table 3). 
 
 

Combination of different resistance integron classes 
 

Results in Table 4 indicated that only  isolates  from  stool  

and urine carry two or three classes of integrons 
simultaneously. In stool isolates, the prevalence of IntI1 + 
IntI3 (49%) was significantly higher (p < 0.0001) than the 
other types of combinations IntI1 + IntI2 (4.1%) and IntI2 
+ IntI3 (4.1%). However, the combination of all three 
integron classes (IntI1 + IntI2 + IntI3) was only observed 
in stool isolates with a prevalence of 2%. For urine 
isolates, only a prevalence of 1.2% of IntI1 + IntI2 was 
observed. 
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Table 5. Prevalence of isolates harbouring integron classes and resistance genes. 
 

Integrons class 

Isolates origin 

Stools  Urine  Pus  Blood 

bla TEM bla CTX-M bla OXA-1 bla SHV  bla TEM bla CTX-M bla OXA-1  bla TEM bla CTX-M bla OXA-1  bla TEM bla CTX-M bla OXA-1 

IntI1 n (%)    42 (95.5) 31 (70.5) 33 (75) 8 (18.2)  56 (82.4) 29 (42.6) 3 (4.4)  2 (50) 2 (50) 3 (75)  2 (100) 2 (100) 2 (100) 

IntI2 n (%)    2 (100) 1 (50) 1 (50) 1 (50)  3 (100) 1 (33.3) 0 (0)  0 (0) 1 (100) 1 (100)  1 (100) 0 (0) 0 (0) 

IntI3 n (%)    24 (100) 20 (83.3) 20 (83.3) 7 (29.2)  0 (0) 0 (0) 0 (0)  0 (0) 0 (0) 0 (0)  0 (0) 0 (0) 0 (0) 

 
 
 

Prevalence of integron classes associated 
with resistance genes 
 
Results of stool samples showed a high 
prevalence (95.5%) of E. coli isolates that 
harboured both the IntI1 and bla TEM genes. This 
prevalence was higher (p < 0.0001) than that of 
isolates that harboured both IntI1 and bla CTX-M 
(70.5%), bla OXA-1 (75%), and bla SHV (18.2%). The 
prevalence of isolates harbouring IntI2, IntI3, and 
the bla TEM gene was also higher (p < 0.0001) than 
those harbouring IntI2 and IntI3 with the bla CTX-M, 
bla OXA-1, and bla SHV genes. 

For urine isolates carrying IntI1 and the bla TEM, 
bla CTX-M, and bla SHV genes showed a prevalence 
of 82.4, 42.6, and 4.4%, respectively. These 
results showed that there was a significant 
difference in isolates harbouring IntI1 and bla TEM, 
bla CTX-M, and bla SHV genes simultaneously (p < 
0.0001). For isolates carrying IntI2, 100 and 
33.3% prevalence was observed with bla TEM and 
bla CTX-M genes, respectively. For isolates from 
pus and blood, only isolates carrying IntI1 
harboured bla TEM, bla CTX-M, and bla OXA-1 genes 
(Table 5).  
 
 
DISCUSSION 
 
Integrons are genetic elements that play a major 
role  in   antibiotic   resistance  transmission. They 

can carry several resistance genes at the same 
time. Integrons play an essential role in 
disseminating drug-resistance genes among 
bacteria isolates (Barzegar et al., 2022). The co-
occurrence of these genetic elements significantly 
contributes to the dissemination of antibiotic 
resistance in Enterobacteriaceae and has been 
associated with specific genes conferring 
resistance to β-lactams, quinolones, and 
aminoglycosides (Tewari et al., 2022). 

The results obtained in strains isolated from 
stool samples showed a higher prevalence of IntI1 
(89.8%) than IntI2 (4.1%) and IntI3 (49%). Similar 
results were reported by a study in Iran where the 
prevalence of IntI1(78.26%) was higher than IntI2 
(76.81%) (Kargar et al., 2014). Furthermore, the 
results of a study in Spain reported by Vinue et al. 
(2008) showed a higher prevalence of IntI1 than 
IntI2 detected in isolates from stool (Vinue et al., 
2008). Otherwise, the prevalence of IntI3 was 
higher than that observed in a study in Burkina 
Faso (Dembelé et al., 2022). Globally, these 
results showed that class I integrons are extremely 
important for the development and transmission of 
resistance genes in clinical E. coli strains. Overall, 
given the high prevalence of IntI1, it can be 
suggested that multidrug resistance is associated 
with the presence of these IntI1. 

Regarding urine isolates, the results showed a 
higher prevalence of IntI1 (50.7%) than IntI2 
(2.2%). However, IntI3 was not found. The  results 

of the present study are similar to those reported 
by a study that was done in Iran by Khoramrooz et 
al. (2016), where a prevalence of IntI1 of 52 and 
2.5% for IntI2 was reported. The same study 
reported the absence of IntI3 in urine isolates 
(Khoramrooz et al., 2016).  

However, the results of this study are lower than 
those of Zeighami et al. (2014) who reported a 
prevalence of 78.8 and 4.5% for IntI1 and IntI2, 
respectively (Zeighami et al., 2014). A recent 
study in Iran reported the incidence of class 1 and 
2 integrons was obtained in 39.9 and 14.1% of the 
isolates, respectively. Class 3-integron was not 
detected in any of the Uropathogenic E. coli 
isolates (Nasif et al., 2022; Barzegar et al., 2022). 
However, results of this study were contradicted 
by those reported by Lin et al. (2015) in which any 
isolates from urine carried IntI2 and IntI3 (Lin et 
al., 2015). Overall, the results showed an absence 
of IntI3 in isolates from urine, pus, blood, and 
vaginal swabs. This suggests that IntI3 appears to 
play a minor role in resistance in these E. coli 
strains (Moura et al., 2010). 

The results of this study also showed the 
coexistence of two or even three integrons class 
in certain isolates. Integrons of class 1 and 3 were 
found simultaneously in 24 (49%) stool isolates. 
Etayo et al. (2018) reported the coexistence of 
IntI1 and IntI 2 in 8% in ESBL-producing E. coli 
(Etayo et al., 2018). Rizk and El-Mahdy (2017) 
reported  the  co-existence  of more than one type 
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of integron in 36.9% of isolates, and a prevalence of 38% 
was reported by Kargar et al. (2014) in a study performed 
in 69 multidrug-resistant (MDR) E. coli. Kor et al. (2013) 
found only one isolate carrying both integrons among 
clinical isolates. Odetoyin et al. (2017) reported a 
prevalence of 2.4% in fecal E. coli isolated from mother–
child pairs in Nigeria. Results of the present study 
revealed a prevalence of 1.2% for IntI1 and IntI2 
simultaneously in urine isolates. Previous studies have 
reported the simultaneous occurrence of IntI1 and IntI2 in 
3.3% (Alkhudhairy et al., 2019). Integrons, capable of 
integrating, expressing, and disseminating gene 
cassettes carrying resistance determinants, play a critical 
role in facilitating the multidrug resistance (MDR) 
phenotype in these bacteria (Sabbagh et al., 2021). 
 
 
Conclusion 
 
This study reported the existence of class 1, 2 and 3 
integrons in clinical isolates of multi-resistant E. coli 
obtained from different biological samples. Thus, class 1 
integrons were observed with a high percentage. The co-
existence of these integrons with resistance genes in 
ESBL-producing strains of E. coli had also been 
demonstrated. Hence, it is necessary to set up a 
surveillance system in order to better control the 
dissemination of resistance genes. 
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